Characterization of phagosome trafficking and identification of PhoP-regulated genes important for survival of Yersinia pestis in macrophages.

نویسندگان

  • Jens P Grabenstein
  • Hana S Fukuto
  • Lance E Palmer
  • James B Bliska
چکیده

The transcriptional activator PhoP is important for survival of Yersinia pestis in macrophage phagosomes. However, the phagosomes inhabited by Y. pestis have not been well characterized, and the mechanism by which PhoP promotes bacterial survival in these vacuoles is not fully understood. Lysosomal tracers, as well as antibodies to late endosomal or lysosomal proteins, were used in conjunction with confocal or electron microscopy to study the trafficking of phagosomes containing phoP(+) or phoP mutant Y. pestis strains or latex beads in J774A.1 macrophages. Phagosomes containing phoP(+) or phoP mutant Y. pestis acquired lysosomal markers to the same degree that phagosomes containing latex beads acquired these markers after 1.5 h of infection, showing that nascent phagosomes containing Y. pestis fuse with lysosomes irrespective of the phoP genotype. Similar results were obtained when phagosomes containing viable or dead phoP(+) Y. pestis cells or beads were analyzed at 8 h postinfection, indicating that the Y. pestis vacuole does not become secluded from the lysosomal compartment. However, only viable phoP(+) bacteria induced the formation of spacious phagosomes at 8 h postinfection, suggesting that Y. pestis can actively direct the expansion of its vacuole. PhoP-regulated genes that are important for survival of Y. pestis in phagosomes were identified by Tn5-lacZ mutagenesis and oligonucleotide microarray analysis. Three such genes were identified, and the products of these genes are predicted to promote resistance to antimicrobial peptides (ugd and pmrK) or low-Mg(2+) conditions (mgtC) found in phagosomes. Viable count assays carried out with Y. pestis ugd, mgtC, and ugd mgtC mutants revealed that the products of ugd and mgtC function independently to promote early survival of Y. pestis in macrophage phagosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yersinia pestis Requires Host Rab1b for Survival in Macrophages

Yersinia pestis is a facultative intracellular pathogen that causes the disease known as plague. During infection of macrophages Y. pestis actively evades the normal phagosomal maturation pathway to establish a replicative niche within the cell. However, the mechanisms used by Y. pestis to subvert killing by the macrophage are unknown. Host Rab GTPases are central mediators of vesicular traffic...

متن کامل

Simple and Rapid Detection of Yersinia Pestis and Francisella Tularensis using Multiplex-PCR

Background: Yersinia pestis and Francisella tularensis cause plague and tularemia, which are known as diseases of the newborn and elderly, respectively. Immunological and culture-based detection methods of these bacteria are time-consuming, costly, complicated and require advanced equipment. We aimed to design and synthesize a gene structure as positive control for molecular detection of these ...

متن کامل

Molecular Characterization of Transcriptional Regulation of rovA by PhoP and RovA in Yersinia pestis

BACKGROUND Yersinia pestis is the causative agent of plague. The two transcriptional regulators, PhoP and RovA, are required for the virulence of Y. pestis through the regulation of various virulence-associated loci. They are the global regulators controlling two distinct large complexes of cellular pathways. METHODOLOGY/PRINCIPAL FINDINGS Based on the LacZ fusion, primer extension, gel mobil...

متن کامل

The response regulator PhoP is important for survival under conditions of macrophage-induced stress and virulence in Yersinia pestis.

The two-component regulatory system PhoPQ has been identified in many bacterial species. However, the role of PhoPQ in regulating virulence gene expression in pathogenic bacteria has been characterized only in Salmonella species. We have identified, cloned, and sequenced PhoP orthologues from Yersinia pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica. To investigate the role of P...

متن کامل

Characterization of Yersinia pestis Interactions with Human Neutrophils In vitro

Yersinia pestis is a gram-negative, zoonotic, bacterial pathogen, and the causative agent of plague. The bubonic form of plague occurs subsequent to deposition of bacteria in the skin by the bite of an infected flea. Neutrophils are recruited to the site of infection within the first few hours and interactions between neutrophils and Y. pestis have been demonstrated in vivo. In contrast to macr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 74 7  شماره 

صفحات  -

تاریخ انتشار 2006